Knock Knock: Neural Joke Generation and Classification Final Report

Ryan Faulkner, Richard Rex, Michael Ryan
Department of Computer Science
Georgia Institute of Technology
{ryan58795, richardr2926, mryand7}@gatech.edu

Abstract

The goal of our project is to generate cohe-
sive, and humorous jokes through implement-
ing modern developments in the field of text
generation such as GPT Language Modelling
and evaluating them using latest classifiers such
as BERT . As an addition to our project, we
have also implemented a N-gram joke genera-
tor model and a hate speech classifier which we
use in order to distinguish jokes that may be of-
fensive/insensitive to any given group of people.
We also built a user-friendly web application
that collects user data on how funny a given
joke is in hopes of using that data to retrain a
better classifier and joke generator. We evalu-
ated the F1 of the classifiers based on an eval
set of jokes and we also measured the perplex-
ity of the generators and compared to baseline
models trained on our dataset. For future steps,
we want to be able to host the generator models
in real time, where we can use our fine tuned
GPT model and update the model in real time
based on normalized user feedback. Finally
as stretch goals we would like to use BERT
as an adversarial classifier to make a Genera-
tive Adversarial Network joke generator. We
also want to use our implemented hate speech
classifiers to filter out jokes before displaying
them. The code is hosted at the following link:
https://github.com/Richard2926/NLP-Final

1 Introduction and Related Works

Imagine a world where your computer teases you
for typing in your password wrong for the third
time in a row. A world where your microwave
jokes about you having to grab the box out of the
recycling to double check the heating time on that
frozen meal. This is a world where having a conver-
sation with your Al assistant isn’t a dry interaction
of issuing commands and receiving acknowledge-
ments or clarifications. Instead each conversation
could be entertaining, enjoyable, and altogether

more natural. With our neural joke generation
model we take one step closer to this future.

There are many factors for why the study of joke
generation is important. Humor adds a very hu-
man element to communication. Adding humorous
quips to conversation with artificial agents will go
a long way in creating socially acceptable Al. Fur-
thermore, the study of humor has been an active
area of research in linguistics for decades. Ini-
tial ideas of humor followed the incongruency the-
ory which suggested that humor came out of unan-
ticipated changes to an expectation (Attardo and
Raskin, 1991). More recent cross-cultural studies
of humor have pointed to the benign violation the-
ory that argues humor must both violate expected
norms but simultaneously not violate these expec-
tations in a way that is too extreme or inappropri-
ate given the context (McGraw and Warner, 2014).
Building models to generate jokes can contribute
further to the study of humor by showing what
patterns computational models can extract from
humor.

Of course, there are several past works that are
relevant to this work. Past work in computational
humor fits into two main areas: humor recognition
and humor generation (Amin and Burghardt, 2020).

A lot of research has been done in humor recog-
nition. (Mihalcea and Strapparava, 2005) built
SVM and Naive Bayes classifiers to recognize one-
line jokes. (Davidov et al., 2010) identified sar-
casm by labelling some sarcastic tweets and using
k-nearest neighbors to classify new inputs. (Kid-
don and Brun, 2011) detected phrases compatible
with the addition of That’s what she said” by us-
ing an SVM and the probability of certain words
appearing in an erotic context. (Yang et al., 2015)
sought to recognize humor and the humor anchor
in a phrase using a method called Maximal Decre-
ment. Recently, one-liner joke recognition has
been returned to using more modern NLP methods.

ColBERT (Annamoradnejad and Zoghi, 2021), a
fine-tuned BERT model trained on 200k short texts
(100k jokes, 100k news headlines), boasts a 98.2%
F1 Score.

Humor generation has also been an active area of
research in computational humor. Originally much
of computational humor generation was in the form
of template completion models such as LIBJOG
(Raskin and Attardo, 1994). LIBJOB filled in the
blanks of the joke "How many ____ does it take to

screw in a lightbulb? ____. Oneto ____and ____to
,,,,, ” (Petrovi¢ and Matthews, 2013) filled in T
likemy ____likeIlikemy ____. ____. ”” using wordnet

and Google n-grams to find word pairs that fit the
expected relationships in vector space. (Sjobergh
and Araki, 2008) built a standup comedy routine
generator by filling in ”Speaking of jnoun,. jJoke;”
and pulling related jokes from a database. These
models are capable of generating jokes conforming
to a specific template, but we wanted to generate
completely free-form one liner jokes. Related work
exists in this area as well. (Yu et al., 2018) col-
lected a dataset of puns and trained an LSTM to
generate more. The model achieved a perplexity
score of 889.07 on the pun dataset. (Ren and Yang,
2017) designed an attention based LSTM RNN
network for current event joke generation. This
model could be prompted with a topic and it would
generate jokes based on that topic. These models
scored high in creativity for joke generation, but
many of the jokes did not make sense which made
them score low in humor (Amin and Burghardt,
2020). In this work we use new developments in
text-generation such as GPT-2 to improve the se-
mantic meaning and humor of generated jokes.

2 Methods

2.1 Data

We are using a dataset of 200k phrases from the
ColBERT joke classification paper (Annamoradne-
jad and Zoghi, 2021). The phrases are comprised
of 100k short humorous texts scraped from reddit
and 100k serious news headlines from the Huff-
ington post. The jokes were scraped mostly from
the r/jokes and r/cleanjokes subreddits. Table 1 has
some summary statistic for the dataset. Table 2
shows the top 5 most common tokens across the
dataset.

Some randomly sampled jokes from the dataset
are: I figured out how to talk to girls just walk up
to them and press A”, “What is the network admin

Statistic Jokes Headlines | Overall
total samples | 100k 100k 200k
vocab size 52350 61653 91033
token count 1199765 | 1556274 2756039
avg wd/phr 15.56274 | 11.99765 | 13.7802
avg chr/phr | 69.99166 | 64.94949 | 67.4706

Table 1: Summary statistics on our dataset. (wd/phr =
words/phrase)

Class Top S Tokens

Overall like,call,trump,get,new
Jokes call,like,get,say,one
Headlines | trump,photos,new,video,says

Table 2: The top 5 most common tokens in the dataset
(excluding stop words and punctuation)

favourite lullaby? mary had a little lan”, "What
did the psychic velociraptor say to his friend? dino
what you’re thinking”.

Some randomly sampled offensive jokes from
the dataset are: “Life is like a bicycle, a black will
probably take it”, "What do you call a gay piece
of bread? a fagguette”, ”’I like my coffee like i like
my women... in the kitchen.”.

Some randomly sampled headlines from the
dataset are: “Interest rates near zero prevent sav-
ings accounts from growing”, ”’Is Hillary Clinton
the last democratic presidential candidate to sup-
port the death penalty?”, "How to avoid disaster
during this week’s severe cold weather”.

2.2 Models

The models that we decided to use are GPT-2 and
BERT because they are the two leading language
models presently. They are the same in that they
are both based on the transformer architecture, but
they are fundamentally different in that BERT has
just the encoder blocks from the transformer, whilst
GPT-2 has just the decoder blocks from the trans-
former.

GPT-2 consists of solely stacked decoder blocks
from the transformer architecture. In the stan-
dard transformer architecture, the decoder is fed a
word embedding concatenated with a context vec-
tor, both generated by the encoder. Furthermore, in
the standard transformer architecture self-attention
is applied to the entire surrounding context. We
trained the GPT-2 in the standard transformer way,
with a batch size of 1 with a well-defined sentence
length of 150, and a top, value of 0.92 which

controls how random/creative the text generation
should be. At evaluation time, we switch the model
to expecting input one word at a time. We did
this by temporarily saving the necessary past con-
text vectors as object properties. Since our criteria
was to test the ways that context affected the joke,
GPT-2 was ideal because it works like a traditional
language model in that it takes word vectors and
input and produces estimates for the probability of
the next word as outputs. It is auto-regressive in
nature: each token in the sentence has the context
of the previous words.

The next model we used was BERT, like GPT-
2, which uses the transformer architecture. How-
ever, it uses the encoder part instead of the decoder
part. We used BERT with the purpose of storing
knowledge learned from the training data. It was
an apt choice because it utilizes a multi-layer bidi-
rectional transformer encoder consisting of several
encoders stacked together, which can learn deep
bi-directional representations. We feed BERT sen-
tence embedding the whole text into hidden layers
of the neural network and training it with hyper-
parameters as follows: 5 epochs, max sequence
length of 128 and a Binary Cross entropy loss func-
tion in order to calculate loss. Further results are in
the results section of the paper.

2.3 Baseline Models

For our baseline models, we used the RNN and a
N-gram Model. The RNN is a bidirectional LSTM
that has one layer and 16 embedding dimensions
with 128 hidden dimensions. We output the final
layer to a linear layer then use a sigmoid activation
function in order to classify the joke as humorous
or not. We use binary cross entropy loss as our
loss function and adam as our optimizer. The state
of the art classifier for joke is around 98 percent
so our resulting 97 percent shown good progress
towards classification.

The N Gram model is constructed by generating
the count for all the words and then predicting
and generating based on that. Our N Gram model
also used interpolation and smoothing to account
for increased accuracy where n = 15 in our case.
Some of the jokes generated by the N gram model
are: “Now I have to court, the Eversweet truck and
breakfast is waiting to blow up.”, “He had a bad day
and night he would know.”. As we can see the jokes
are not very cohesive. We have also implemented
smoothing for this method. Some of the jokes

generated by our GPT model are “Why can’t you
hear a pterodactyl go to the bath- room? because
it’s extinct”, “Why did the blonde smoke weed? so
she wouldn’t get high.” Our GPT model generated
a perplexity of 9.5158 compared to the 3000 of the
N-gram generator which clears our success criteria
and our model also retains the structure of a joke.
We believe the GPT performed much better because
they learn relationships between words and utilize
positional embeddings.

3 Results

3.1 Experimental Setup

For our RNN classifier, we used the data set of
about 2000 tweets classified as hate speech or not
to train with a split of .8/.1/.1 for train val and test
sets. We shuffled the data and split randomly to
minimize bias. We ran this same data with naive
bayes and logistic regression classification tech-
niques too, but eventually went with RNN as we
received the better results from the RNN model.

For our n-gram model, we used the compilation
of over 200,000 jokes from reddit/stupidstuff/waka.
For joke generation, we altered the context, or ’n”
considered for word generation. We tried n-gram
generation by character as well, with varying ’n”
values, but results were often more incoherent than
with word generation.

For our BERT classifier we tried to match the
procedure in the ColBERT paper (Annamoradne-
jad and Zoghi, 2021) and replicate the results. The
train/test split was 80/20 and we used the same
split from the original paper. This split was ran-
dom so the training set ended up with 79,918 jokes
and 80,082 news headlines. The test set ended up
with 20,082 jokes and 19,918 news headlines. The
bert-base-uncased model was used as the model
architecture and for the pretrained weights. For our
optimizer we opted to use Adam and a learning rate
of v = 0.00002.

For our GPT-2 generator we fine-tuned a gpt2-
medium model on a train/test split of 0.9/0.1. The
news headlines were not included in the gpt2 model
training at all. This meant the training set had
90000 jokes and the evaluation set had 10000 head-
lines. Each joke had a < |joke| > token added to
the beginning and a < |endoftext| > token added
to the end. This was the format that the GPT-2 tok-
enizer was expecting these tokens in. We limited
the max sequence length to 150 and implemented
a repetition_penalty of 1.5 for n-grams of size 2 to

Results

Joke classifier models A P R F1
Our RNN 97.0 96.8 97.2 97.0
Our BERT 9846 98.46 98.46 98.46
Decision Treef 78.6 769 82.1 79.4
SVMt 87.2 86.9 88.0 87.4
Multinomial NBf 87.6 86.3 90.2 88.2
XGBoostt 72.0 75.3 77.7 81.3
XLNett 91.6 87.2 97.3 92.0
ColBERTY 98.2 99.0 97.4 98.2

Table 3: Accuracy, Precision, Recall, and F1 of our
different Classifiers. 1 ColBERT results are reported as
written in the paper (Annamoradnejad and Zoghi, 2021)

prevent the model from saying the same word over
and over.

3.2 Result Comparison
3.2.1 Joke Classifier Comparison

We worked on two Joke Classifier models. An
RNN model and a fine-tuned BERT model. We
used the ColBERT dataset for our joke classifica-
tion models so we could compare results to other
works (see Table 3). Our BERT model outper-
formed all other classifiers with an F1 score of
98.46, even outperforming the ColBERT model.
Interestingly our RNN classifier also outperformed
most of the baseline models tested in the ColBERT
paper. We ran BERT two times to test if the outper-
forming of ColBERT was replicable. The first time
our BERT classifier got an F1-score of 98.56 (on a
shuffled train/test set). The second time our BERT
model scored 98.46 (on the exact same train/test set
as ColBERT. We did not run our model more than
these two times, because our BERT model took
about 4 hours to train for 5 epochs using Google
Colab GPUs. This training time was a prohibitive
factor, but also we wanted to be conscious of re-
cent research into the environmental impacts of
large language models such as BERT and GPT
(Bender et al., 2021). We did not see training our
BERT model several times to be a productive use of
time/power to see if our increase of just 0.26 in F1
score from ColBERT was significant. We still did
perform significance testing on these two samples.
Our T-test yielded a p-value of 0.101803 showing
this difference was not significant at the o = 0.1
level. Thus we cannot reject the null hypothesis
and we must conclude that the F1 scores are not
significantly different.

One reason that our BERT model might’ve per-
formed better than ColBERT (although not signifi-
cantly better) comes from our training strategy. Al-
though both our BERT model and ColBERT trained

0200 — Tain

0175 Valid
0.150
0125
0.100

0.073 \

0.050

Loss

0.025

\/\M——\h

o 10000

0.000

30000 40000 50000

Global Steps

20000

Figure 1: Training and Validation loss for BERT classi-
fication over training steps

Confusion Matrix

- 17500

263 - 15000

- 12500
353
JOKE

JOKE

10000

Tue Labels

- 5000

NEWS

-2500

NEWS
Predicted Labels

Figure 2: Confusion matrix for BERT joke/news head-
line classifications

for 5 epochs, our BERT model started overfitting
after just 2 epochs (see Figure 1). We only saved
our model when it reached a minimum validation
loss. This meant that even though we trained our
model for 5 epochs like ColBERT we ended up
running our evaluation on the 2 epoch model. It is
possible ColBERT overfit just slightly more than
our model.

Although an F1 score of 98.46 is quite high our
BERT model still made several classification errors
(see Figure 2). Upon closer inspection these clas-
sification errors came primarily from edge cases.
Sometimes news authors get creative and make
their headlines into jokes. For example: “folks
try a drunk driving simulator and it’s a total buzz
kill”, ”what’s pink, red and gucci all over? bey-
once, for some reason.”, and ’1 see london, i see
france... but i don’t want to see beyonce in her un-
derpants”. Sometimes the jokes are objectively bad:
“how can you be so sad when you are so beautiful?”’
and ”if you say unique new york (5 times fast)
is it easy or hard?”. Sometimes jokes are in the

form of headlines: ’are we as a society going to re-
ject clickbait journalism? the answer may surprise
you!” and “’very offensive man on the loose with
flint and steel sparks outrage”. Overall these cases
are difficult even as a person to determine if they
are humor or headlines (sometimes they are both).
As such we are very satisfied with the performance
of our classifier.

3.2.2 Generator Model Comparison

N-gram generator Results: Scored a perplexity of
3000, which was very unsatisfactory for the goals
of this project. We knew we would have to turn to a
different generation model if we wanted to improve.
The jokes created were qualitatively okay at times,
but often more incoherent stories were generated
of great lengths. This was our baseline model for
development on this project. Jokes showed some
semblance of humor like "What a bunch of fel-
low rednecks riding in the barn. That’s what He
said”. Other generations were just long stories in-
stead however: ”The man then walks over to the
donkey and whispers into it’s ear, the donkey then
starts laughing, so the man got free drinks for the
rest of the evening did not improve his mood and
eventually the construction crew, all of them ”gems-
in-the-rough,” more or less, adopted her as a kind
of project mascot. They chatted with her, let her sit
with them while they had tea and lunch breaks, and
gave her little jobs to do here and there to make
her feel important.” We looked to remedy this in
the development of our GPT model. Our n-gram
model is very free of user input or attention so it
is possible that because of this hands-off design
that we are unable to get satisfactory results, and
instead get long stories and a large perplexity value.

To address some of the limitations of our n-gram
model we fine-tuned a GPT-2 model on 90,000
jokes. This did significantly improve the perplexity
of the models scoring 9.5158. The higher cohesion
of the jokes can also be seen from the randomly
sampled generated jokes of each model (see Table
4). GPT-2 definitely learned certain characteristics
of jokes such as setting up for a punchline with
a question. There is still room for improvement
with the actual humor of the joke, however. Jokes
like "How do you get a blonde to fart? pick her
nose.” have all the elements of a joke without ac-
tually being funny (besides maybe appealing to
childish humor of farts and picking your nose). An-
other issue we discovered in our GPT-2 model was
direct replication of some of the jokes from the

training set. For example, the joke "How do you
find will smith in a snowstorm? look for fresh
prints!” and "What'’s the difference between snow-
men and women? snowballs” seem really good at
first glance, but then you find out these jokes are
almost exactly copied from the training set. Upon
even further investigation we realized this may par-
tially be a problem with the ColBERT dataset itself.
Because this dataset was scraped from reddit and
not manually collected there are several repeats of
jokes. For instance our model generated this joke:
(warning vulgar) "What'’s the difference between
jam and jelly? i can’t jell my c**k down a girls
throat”. (censorship added) This joke shows up
more than 50 times in the training set. Besides
this being a potentially concerning reflection on
society that this joke has been copied and reposted
over 50 times to reddit, this also demonstrates a
dataset shortcoming because we are not working
with 100,000 unique jokes. Future work should
consider applying further filtering to the ColBERT
dataset to reduce replicated jokes.

Another problem we wanted to address with
our generated jokes was how offensive some of
the jokes being generated were. For example our
model generated the following jokes (warning of-
fensive) "Have you ever tried ethiopian food? nei-
ther have they.” and "Why do blondes have big
noses? because air is free!”. This was a problem
we believed we could address. In order to help mit-
igate this issue we trained an RNN offensiveness
classifier.

3.2.3 Offensiveness Classifier

RNN classifier for Offensive Jokes: Earned a ac-
curacy of .83, an Fl-score of .59, a recall of .92,
and a precision of .89. This shows that our RNN
classifier is an adequate model for determining hate
speech among our jokes. After hand labeling some
jokes of our own and testing, we received an accu-
racy of 97 percent for classifying offensive jokes,
but we would need to study and request outside
annotators to affirm this success. One way we look
to implement this is by storing the data our front
end currently receives to determine whether jokes
are funny or offensive.

3.2.4 Proposed Pipeline

With 3 key models in our project we wanted to
propose a pipeline to connect these components
(see Figure 3). We propose a pipeline where the
user inputs a few tokens as the start of the joke.

N-gram

Wee Jock’s arm shoots straight up and said "U.T.I?
Knock knock. Who’s there? - Juan? - Juan who? - I spoke about the results.
When Johnny got home, all the veggies on now and then skip a beat my parents were...

GPT-2

Why didn’t the chicken cross a road? because it wasn.
My dog just showed up at the vets. i guess he’s in a purrfective state of shock
How do you get a blonde to fart? pick her nose.

Base

Q: what do outlaws eat with their milk? a: crookies.
How many people can ride on a bird? toucan.
What lies upside down a hundred feet in the air? a dead centipede.

Table 4: Randomly sampled generated joke examples from N-gram model, GPT-2 model, and original dataset

User Input to Models

Generators

N-Gram GPT-2
Generator Generator
Text
is not
+ ajoke
Joke
is BERT Joke Classifier
offensive
— RNN Offensiveness Classifier

Display Generated Joke

Figure 3: Proposed pipeline to combine our models for
joke generation

Then based on the model they have selected, either
our N-gram model or GPT-2 generates a joke. This
joke is classified as either a joke or not a joke by
our BERT classifier. If it is considered a joke then
we can check if the joke is offensive using our RNN
offensiveness classifier. If the joke is not offensive
then it can be shown to the user, otherwise if the
text is not a joke or if it is offensive we will request
a new output from our generator.

We would like to integrate this pipeline into our
webdemo (see Figure 4) so that we can ensure
higher quality and less offensive jokes.

3.3 Work Division

Ryan - Developed the RNN model for offensive
classification, and the N-gram model for joke
generation. Performed analysis on his according
models and did the according write-ups and
presentation on them. Provided samples of n-gram
generated jokes for our presentation demo.

Michael - Worked on the BERT model for
joke classification, and the GPT-2 model for joke
generation. Ran analysis on the multiple model
improvements he developed and produced the
according write-ups for his developments in the
papers and presentations. Gathered and presented
statistics on the original datasets used as well
so that we could better understand our data. He
provided the GPT-2 samples that were utilized
during the demo for our presentation.

Richard - Worked on the RNN model for joke
classification, and the application that integrates
user feedback. Analyzed the RNN he developed
and did the write-ups and presentation for his work.
He developed the standalone app that was used
during the presentation for our demo.

4 Conclusion

The implementation of attention in our models has
shown, for us, to qualitatively improve the per-
formance of humor generation. By focusing our
training on the more relevant information in our
data set, we can generate more cohesive shorter
length jokes. This makes sense, as creating humor
relies on paying attention to the most important
parts or “punchlines” of the jokes, which isn’t well
addressed by an n-gram model. We were happy to
see great improvements with attention implementa-
tions in GPT-2.

For our results, our GPT-2 perplexity was stan-
dard among the papers we looked at models for.
Our BERT classifier also performed up to stan-
dards, with an Fl-score and accuracy similar to
the described models in the paper (Annamoradne-
jad and Zoghi, 2021). This is likely because we
used the same data set for our BERT classifier due
to its success in the field. Our GPT-2 model per-

GPT-2

Not
Cohesive

Somewhat
Cohesive

Somewhat
Funny

Made Me

Funny e

Generate

Figure 4: The webdemo we have deployed to showcase our joke generation models and collect user feedback

formed well with the custom data set we used com-
pared to the papers, and created jokes that could
be considered humorous. We were happy with the
improvements over the n-gram solution that the
GPT-2 solution provided us with, and would en-
courage future work to also look into GPT-2 as an
option for humor generation.

To continue our work, we would really like to
feed back user input into our model to tune it to
produce more humorous/less offensive jokes. We
have not tied our offensive classification model to-
gether with the generation model yet, so we would
need to look at implementing that, although we
have produced both models as singular entities. We
are also storing the Likert Scale responses from
users using our application, however we need to
also tie these back into our GPT model’s weights
to more finely tune the humor. Further, we would
need to look up at clearing up repeat jokes, which
could maybe be handled by removing duplicates
from the data-set. We currently produce multiples
of the same jokes or jokes that already exist in the
data set.

There are also interesting areas of research that
could pick up from limitations in our model. For
one, our model does not take any consideration for
the context that the joke is being generated for. This
would be a necessary consideration for any chatbot
or interactive agent attempting neural joke gener-
ation. Another interesting improvement could be
tieing our BERT classifier to our GPT-2 generator
in an adversarial neural network structure. Gen-
erative Adversarial Neural Networks have shown
impressive performance in improving generation
results so this would be an interesting improvement

using some of the models we have already created.
The loss function of the classifier and generator
would just need to be modified in an adversarial
fashion. We are excited to see where the field of
computational humor goes next.

5 Ethics

We wanted our project to be a lighthearted source
of entertainment and a proof of concept in the do-
main of neural joke generation. Jokes are meant to
be fun and make people laugh. That being said, as
humor lies on the border of what is a violation of
expectations without actually stepping over the line
according to the benign violation theory (McGraw
and Warner, 2014), offensive jokes become a quick
way to get some people to laugh at the expense of
others. This was in fact a problem we saw emerge
in our model. To address this we built an offensive-
ness classifier using an RNN. We use this model
to try to catch offensive jokes before displaying
them to the end user. This way people can choose
whether or not they want to see an offensive joke.
With further training we want to encourage our
model to move away from offensive humor.

We hope that our model can be used as a launch
pad for future humor generation models and pos-
sible integration into humor chatbots. With this
in mind we don’t want to deploy a system that is
going to go around offending people. Humor is
highly dependent on the context of the joke and
this would be an interesting area of future research
- context based joke generation. This will need to
be explored further because it may be fun for your
Al assistant to joke around with you when you are
planning a fun vacation, but inappropriate when

you are booking travel plans to a funeral. Under-
standing context is a huge part of humor.

References

Miriam Amin and Manuel Burghardt. 2020. A survey
on approaches to computational humor generation.
In Proceedings of the The 4th Joint SIGHUM Work-
shop on Computational Linguistics for Cultural Her-
itage, Social Sciences, Humanities and Literature,
pages 29-41, Online. International Committee on
Computational Linguistics.

Issa Annamoradnejad and Gohar Zoghi. 2021. Colbert:
Using bert sentence embedding for humor detection.

Salvatore Attardo and Victor Raskin. 1991. Script the-
ory revis(it)ed: joke similarity and joke representa-
tion model. 4(3-4):293-348.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? . In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT 21, page 610-623, New York, NY,
USA. Association for Computing Machinery.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, CoNLL ’10, page 107-116, USA.
Association for Computational Linguistics.

Chloé Kiddon and Yuriy Brun. 2011. That’s what she
said: Double entendre identification. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies, pages 89-94, Portland, Oregon, USA.
Association for Computational Linguistics.

Peter McGraw and Joel Warner. 2014. The humor code:
A global search for what makes things funny. Simon
and Schuster.

Rada Mihalcea and Carlo Strapparava. 2005. Making
computers laugh: Investigations in automatic humor
recognition. In Proceedings of Human Language
Technology Conference and Conference on Empiri-
cal Methods in Natural Language Processing, pages
531-538, Vancouver, British Columbia, Canada. As-
sociation for Computational Linguistics.

Sasa Petrovi¢ and David Matthews. 2013. Unsupervised
joke generation from big data. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
228-232, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Jonathan D. Raskin and Salvatore Attardo. 1994. Non-
literalness and non-bona-fide in language: An ap-
proach to formal and computational treatments of
humor. Pragmatics and Cognition, 2(1):31-69.

He Ren and Quan Yang. 2017. Neural joke generation.

Jonas Sjobergh and Kenji Araki. 2008. A complete
and modestly funny system for generating and per-
forming Japanese stand-up comedy. In Coling 2008:
Companion volume: Posters, pages 111-114, Manch-
ester, UK. Coling 2008 Organizing Committee.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard Hovy.
2015. Humor recognition and humor anchor extrac-
tion. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2367-2376.

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A neural
approach to pun generation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1650-1660, Melbourne, Australia. Association for
Computational Linguistics.

https://aclanthology.org/2020.latechclfl-1.4
https://aclanthology.org/2020.latechclfl-1.4
http://arxiv.org/abs/2004.12765
http://arxiv.org/abs/2004.12765
https://doi.org/doi:10.1515/humr.1991.4.3-4.293
https://doi.org/doi:10.1515/humr.1991.4.3-4.293
https://doi.org/doi:10.1515/humr.1991.4.3-4.293
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://www.aclweb.org/anthology/P11-2016
https://www.aclweb.org/anthology/P11-2016
https://www.aclweb.org/anthology/H05-1067
https://www.aclweb.org/anthology/H05-1067
https://www.aclweb.org/anthology/H05-1067
https://www.aclweb.org/anthology/P13-2041
https://www.aclweb.org/anthology/P13-2041
https://doi.org/10.1075/pc.2.1.02ras
https://doi.org/10.1075/pc.2.1.02ras
https://doi.org/10.1075/pc.2.1.02ras
https://doi.org/10.1075/pc.2.1.02ras
https://www.aclweb.org/anthology/C08-2028
https://www.aclweb.org/anthology/C08-2028
https://www.aclweb.org/anthology/C08-2028
https://doi.org/10.18653/v1/P18-1153
https://doi.org/10.18653/v1/P18-1153

