
Cloud Computed Machine Learning Based
Real-Time Litter Detection using Micro-UAV

Surveillance

Ashley Chung Sean Kim
ahchung722@gmail.com seandyk@gmail.com

Ethan Kwok Michael Ryan Erika Tan
ethan.c.kwok@gmail.com michael ryan 2000@yahoo.com eatan18@gmail.com

Ryan Gamadia*
ryangamadia96@gmail.com

New Jersey’s Governor’s School of Engineering and Technology
July 27, 2018

*Corresponding Author

Abstract—Litter can remain undetected and uncollected for
extended periods of time, causing detrimental effects on the en-
vironment. Current solutions to mitigating these effects focus on
severe legal action directed towards offenders or litter collection
events. This paper proposes a micro-unmanned aerial vehicle
(UAV) capable of real-time litter detection from video surveillance
footage through an ensemble-based machine learning model.
Performances of five different algorithms, two classifiers and
three detectors, were compared to determine the strongest models
to utilize in the ensemble method. The five models were trained in
parallel with various public images of litter on the Google Cloud
Computing Engine. Out of the two ensemble models tested, one
being a custom-built ensemble and the other being a bagging
ensemble, performance of the bagging ensemble demonstrates
a significant improvement in performance over any individual
model.

I. INTRODUCTION

Undetected litter is a ubiquitous problem that has negative
implications on quality of life, the environment, and the
economy. When municipal solid waste is improperly disposed,
it can become a hindrance not only in public areas, where they
are most commonly found, but also in animal habitats. For
example, litter containing harmful chemicals may contaminate
the surrounding water and air, causing further habitat alteration
by depleting levels of oxygen and light. In turn, this impedes
the ability of habitats to support life, leading to a decline in
species diversity [1]. However, not only does litter alter the
Earth’s environment, but it also directly affects the animals
themselves. The ingestion and entanglement of various im-
properly disposed contaminants poses a considerable threat to
wildlife in habitats around the world. Unfortunately, unless
these biohazards are identified and removed, they will take

many years to decompose and will continue to disrupt the
ecosystem [2]. In addition, up to 90% of forest fires are started
by another commonly disposed item: cigarettes [3]. These fires
can not only cause damage to the forest ecosystem, but also
cost millions of dollars in reparations.

Currently, most solutions to this problem are not automated;
rather, they revolve around legislation or community efforts to
manually remove litter. For instance, the punishment for minor
infractions is a fine and an order to clean litter or complete
community service. In New Jersey, first time offenders are
fined between $100 to $500 and subjected to 20 to 40 hours
community service [4]. Additionally, many organizations work
very closely to maintain public areas. One of the largest or-
ganizations that upholds the sanitation of public areas is Keep
America Beautiful. This organization founded the Great Amer-
ican Cleanup, the largest community improvement program
in the US to renew and clean recreational areas, shorelines,
and waterways by removing litter and debris [5]. Another
solution implemented are anti-littering campaigns, such as
Dont Mess with Texas, created by the Texas Department of
Transportation [6][7]. While these solutions have impacted the
issue of littering, they are not feasible long term solutions, as
human surveillance is both dependent on human labor and
time-consuming. Thus, a more effective long term solution
would be an automated object detection system capable of
detecting and locating litter solely from real-time transmission
of micro-UAV surveillance footage.
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II. BACKGROUND

A. Micro-UAV

Micro-UAVs were chosen as an instrument to collect vi-
sual data because they are easily portable and inexpensive,
especially when compared to drones of standard size. In
addition, micro-UAVs have the ability to navigate in smaller
and narrower spaces, which would be useful for areas such
as urban environments. Because of their mobility, they can
also monitor a larger territory than security cameras would
otherwise cover. The drones that were used in this project are
specifically Cheerson CX-10WD-TX models that are remote
controlled over Wi-Fi and equipped with high-definition first-
person view cameras. The utilization of the drones allows for
real-time transmission of video and image data to be analyzed
by the litter detection machine learning models.

B. Machine Learning and Computer Vision

This project combined machine learning and computer
vision techniques to accomplish the automated detection of
litter. Machine learning is a mathematical process that trains
computers to gain intuition about certain data through the
recognition of patterns and traits. Within the field of machine
learning, computer vision aims to automate the understanding
of visual data such as images and videos. It analyzes non-
tabular data and extracts important information and patterns
from these data. This project will train and test two types
of models: classifiers and object detectors. Classification is
defined as the categorization of an object into its respective
class; for the purposes of this project, different types of litter
will be classified in order to distinguish one type of waste from
another. Detection categorizes the object in an image and also
locates it by providing a bounding box around the object.

C. Classifiers

1) Convolutional Neural Network (CNN): CNNs are com-
monly used to perform object detection, group similar objects,
and classify images. Similar to feature detectors, CNNs take
multi-channeled images as inputs and apply mathematical
functions known as kernels onto the image vectors in order
to recognize the features that are deemed most important
for each image. For certain algorithmic layers of the CNN,
different functions are applied so that the features across the
whole image are accounted for in different positions, a process
known as convolution. Another process that CNNs utilize
is pooling, in which the image is compressed by removing
insignificant data. Convolution and pooling are repeated until
a single dimensional array is produced. The network then
classifies the image with a numeric confidence score. The
backpropagation algorithm is then used to continually train
the network and adjust the weights in the CNN layers. The
goal of backpropagation is to minimize the prediction error of
the CNN by adjusting the features and weights until an optimal
combination of parameters is found. A sample error function
that may be used with backpropagation is displayed below, in

which the error function E of vectors y and y′ computes the
square of the Euclidean distance between the two vectors [8].

E(y, y′) =
‖y − y′‖2

2
(1)

2) Support Vector Machine (SVM): Support Vector Ma-
chine is a machine learning classifier that separates data by
constructing a hyperplane between categories. The SVM views
each data point as a p-dimensional vector and draws a (p−1)-
dimensional hyperplane. The mathematical representation of a
SVM is written in Equation 2, with β as the weight vector and
β0 as the bias vector.

f(x) = β0 + βTx (2)

From the infinite number of hyperplanes that exist between
the categories, the SVM chooses the most optimal hyperplane
that maximizes the margin, or twice the distance between the
closest training data points to the hyperplane. The distance
between a data point and a hyperplane is calculated as shown
in Equation 3.

distance =
|β0 + βTx|
‖β‖

(3)

Fig. 1. Process of SVM drawing the optimal hyperplane [9]

To use the SVM as a classifier, the histogram of oriented
gradients (HOG) was chosen as the feature descriptor, an
algorithm that extracts features from an image, such as shape
and texture [9]. The HOG feature descriptor calculates the
distribution of direction of gradients, which is useful for
determining the shape of an object [10]. Before calculations,
the image is preprocessed to a certain size of choice before
running the feature descriptor to maintain the same feature
vector length for all images. Afterwards, the gradient values
are calculated by applying a [−1, 0, 1] derivative mask in both
horizontal and vertical directions, which are represented by
gx and gy . For each pixel, the gradient has a magnitude and
direction, as shown in Equation 4 and 5.

g =
√
g2x + g2y (4)

θ = tan−1
(
gy
gx

)
(5)

To calculate the histogram, the image is divided into cells of
a certain size. Then, the gradients within this cell are stored by
an array with a size defined by the number of orientation bins.
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With this method, the feature descriptors are less resistant to
noise and computationally effective. Finally, a block size is
chosen to group multiple cells into a single element vector
to store all the histograms for the cells in that block and
normalized to be combined with other blocks [11][12].

Fig. 2. Visualization of HOG [12]

D. Detectors

1) Single Shot Multibox Detector (SSD): Single Shot Multi-
box Detector (SSD) is a machine learning algorithm that
detects objects by generating and finding a matching box
with the ground truth box around an object in a single
forward pass of the network. SSD incorporates a VGG16 CNN
architecture with additional feature extraction layers. A ground
truth box is a user inputed bounding box around an object in
an image. First, SSD creates multiple bounding boxes, or k-
anchors, in each cell on the pre-annotated image using the
Multibox algorithm. Afterwards, as more convolutional layers
are generated, it uses small convolutional filters to create
multi-scale feature maps and thus computes the location and
class scores of the object. Higher resolution feature maps are
responsible for detecting small objects and, lower resolutions
are used to detect large objects. The number of filters applied
around each location in a feature map is calculated with the
following equation: (c+4)k, where c is the number of classes
and k is the number of bounding boxes at a given location.

Fig. 3. Visual diagram of SSD [13]

SSD predictions are classified as positive matches or neg-
ative matches. The intersection over the union (IoU) is an
evaluation metric used to determine positive and negative
matches. If the IoU is greater than 0.5 between the predicted
bounding box and the ground truth box, then the match is
positive. Localization loss, the mismatch between the ground

truth box and predicted box from the Multibox algorithm, is
used to get positive matches closer to the ground truth box.
The confidence loss is the loss in making a class prediction.
For positive predictions, the loss is compared to the confidence
score of the corresponding class. On the other hand, the loss
for negative predictions is compared to the class where no
objects are detected. The final loss function is computed as

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (6)

where N is the number of default matched bounding boxes,
x is 1 if the default box matches the ground truth box and 0
otherwise, l is the predicted bounding box parameters, g is the
ground truth bounding box parameters, and α is the weight for
the localization loss [13].

2) Region-Based Fully Convolutional Network (R-FCN):
R-FCNs seek to achieve accurate and quick predictions for
image location by evaluating object locations using a minimal
number of CNNs. In order to accomplish this, the R-FCN runs
a fully convolutional region proposal network to detect regions
of interest where the model should look more thoroughly for
significant objects. Next, a CNN runs on the entire image to
detect important features.

Fig. 4. R-FCN Architecture [13]

Since the convolutional neural network learns location in-
variance during training, it has no method of determining the
position of objects of interest in the image. To resolve this
issue, the model splits each region proposed by the region
proposal network into k2 subregions, where k is a selected
constant value, and adds a fully convolutional layer to the
end of the CNN with k2(C + 1) filters. In this equation, C
represents the number of classes that the R-FCN is trying to
detect. The model trains these filters to specifically look for
region based features on the object of interest. For example,
one filter might train to look specifically for the upper left
hand corner of a water bottle, while another filter might look
for the center of the bottle. After checking the proposed region
with the region based filters, the filters produce a score for how
confident the proper part of the object is in the proper section
of the proposed region. If the filters produce an overall high
confidence score indicating that the region of interest contains
the object in the proper position, then the model predicts that
the object is in that region (See Figure 4) [14].
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3) You Only Look Once (YOLO): You Only Look Once
(YOLO) is another object detection machine learning algo-
rithm that finds objects in an image by creating a series of
bounding boxes and determining the box with the highest
probability containing the object. While the YOLO network
lags behind other object detection algorithms in accuracy, it is
able to quickly detect objects, making it well suited for real
time detection [15]. Unlike other algorithms, YOLO generates
all its predictions at once, hence the name, as it only processes
the image once. The algorithm first divides an image into a
grid of S2 squares where S is a constant value. If a square of
the grid lies upon an object, then that square is responsible for
creating B bounding boxes on the object. The bounding boxes
also are paired with a confidence score. YOLO generates a
confidence score by assessing how certain it is that a bounding
box contains an object or part of an object. If there is no
object in a bounding box, then the confidence score should be
0. Formally, the confidence score is defined as

Pr(Object)× IOU truth
pred (7)

where Pr(Object) is the probability of how confident YOLO
thinks the bounding box is and the IOU is the intersection
over union.

In words, the confidence score is equal to the IOU between
the predicted and the ground truth box. After all bounding
boxes are generated, YOLO looks at all bounding boxes and
holistically determines how confident it is that a bounding box
or a group of bounding boxes contains an object with the
equation

Pr(Classi|Object)× Pr(Object)× IOU truth
pred

= Pr(Classi)× IOU truth
pred (8)

where Pr(Classi) is the probability probability of of an
object being of a certain class and Pr(Classi|Object) is the
probability of of an object being of a certain class given the
probability of how confident YOLO thinks the bounding box
is.

This provides a class-specific confidence score for each
bounding box. This overall score determines both the prob-
ability that a certain object appears in the box and how well
the predicted bounding box fits the object. If the confidence
score is higher than a certain threshold, then YOLO will finally
propose that there is a certain object in a picture [16].

E. Ensemble Models

Individual machine learning methods can achieve a high
degree of accuracy with enough training and optimization.
One powerful method to boost the accuracy and strength of
machine learning models even further is to use an ensemble
method to combine multiple models together. In an ensemble
method, various machine learning models individually make
predictions on the image, and the predictions are combined
together in order to generate a more accurate prediction.
Common ensemble methods include stacking, bagging, and
boosting. Stacking involves feeding the outputs of one model

into the inputs of another model. In a stacking model, the first
models act as feature descriptors for the later models which
draw more sophisticated predictions, similar to adding layers
in deep learning. Bagging involves averaging together the
predictions of multiple algorithms using a weighted average
where the highest performing models having the strongest
weight in the prediction. Boosting performs in a similar
manner to bagging, except a higher focus is placed on training
models on images that other models failed to predict correctly
instead of randomly distributing the training data. Of these
three ensemble methods, both a simple bagging technique and
a custom stacking algorithm was implemented [17].

F. Python

Python is a high-level object-oriented programming lan-
guage with emphasis on code readability and libraries. This
general-purpose programming language provides powerful im-
plementations to facilitate large data and advanced calculations
with libraries such as TensorFlow, Keras, Scikit-Learn, and
NumPy. Tensorflow, Keras, and Scikit-Learn are libraries that
provide various machine learning frameworks and algorithms,
such as neural networks and support vector machines. NumPy
is a library for applying various advanced mathematical
functions with arrays and matrices, both key components of
machine learning algorithms. To use computer vision, Python
was also implemented with Scikit-Image and OpenCV. These
libraries provide important image manipulation tools computer
vision techniques, such as feature extraction and image clas-
sification.

G. Google Cloud Platform

The Google Cloud Platform encapsulates various tools for
developers such as data analytics, machine learning, and data
storage. A sub-tool of this service is the Google Compute
Engine, which provides virtual machines running in Googles
data centers and network. For this project, Google Cloud
computing was implemented to efficiently train and test the
algorithms. Because there was limited access to computers
with powerful processing power, this often resulted in time-
consuming training periods and poorly optimized results. The
utilization of Google Compute Platform enhanced the training
of models as its virtual machines provided greater graphics
processing power, thus training the algorithms rapidly and
efficiently [18][19].

III. EXPERIMENTAL PROCEDURE

A. Dataset Preparation

The images used to train and test the models were pooled
together from two main sources: Trashnet Dataset from Gary
Thung and Mindy Yangs final project for Stanford University
CS 229 Machine Learning course and various litter images
from Google Images. The Trashnet dataset consisted of 2527
images of litter taken on a white background and resized to a
512x384 resolution. The images in the Trashnet Dataset were
separated into six categories: glass, paper, cardboard, plastic,
metal, and trash. (See Figure 5). After looking through the
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Trashnet dataset, 2342 images were selected as useful for
the final dataset based on the quality and contents of the
pictures. To further supplement the dataset, the tool Google
Images Download was utilized to gather a variety of litter
images through downloading multiple images from a Google
Image search result [20]. Similar to the Trashnet dataset, the
downloaded images were checked for quality and content,
resulting in 483 images. Supplementing the Trashnet dataset
with images from Google Images helped add color to the
background of the dataset because Trashnet consisted solely
of images with a white backdrop. This ensured that the model
would learn in a more versatile manner in litter detection rather
than solely detecting litter on white backgrounds, which is
not practical for implementing the model to be used in litter
detection outside. After gathering all the images, the images
were divided up into eight new labels, as seen above: bottle,
can, cardboard, container, cup, paper, scrap and wrapper.

Fig. 5. Examples of images of litter from the Trashnet dataset used in
constructing the final dataset: (a) bottle; (b) can; (c) cardboard; (d) container;
(e) cup; (f) paper; (g) scrap; (h) wrapper

Fig. 6. Labelled image of a wrapper using LabelIMG

For classifier purposes, only images from the Trashnet
dataset could be used. Due to the nature of classifiers used
in this project, the dataset could only be consisted of images
with one object. Furthermore, the images were further resized
to 160x120 to decrease computation time while maintaining
the aspect ratio. The Trashnet dataset was randomly split with
a 80:20 training to testing ratio, resulting in 1873 training
images and 469 testing images. On the other hand, the
detectors were able to utilize the entire dataset. To generate the
necessary annotations, the tool LabelImg was used to generate
the annotations in an XML file using PASCAL visual object

class (VOC) format [21]. The combined dataset was also
randomly split with a 80:20 training to testing ratio, resulting
in 2259 training images and 566 testing images. The exact
distribution for each category can be seen in the table below.
The number of images and number of objects are not equal
for the combined dataset because some images from Google
Images contained multiple pieces of litter.

TABLE I
DATASET SPECIFICATIONS

Classifier Detector
(Trashnet Only) (Combined Dataset)

Bottle 0.681 0.647
Can 0.489 0.510

Cardboard 0.588 0.689
Container 0.442 0.419

Cup 0.000 0.889
Paper 0.000 0.746
Scrap 0.154 0.000

Wrapper 0.282 0.643
Average 0.330 0.623

B. Evaluation Methodology

Fig. 7. Labelled image of a wrapper using LabelIMG

There are various methods to analyze the efficiency of a
machine learning algorithm. For the object detectors, the mean
average precision (mAP) was used. mAP is an evaluation
metric that measures the accuracy of object detection algo-
rithms. mAP uses intersection over union (IoU) to measure
the overlap between a bounding box with the pre-labeled
bounding box, also known as the ground truth box, and thus
the accuracy [22][23]. If the IoU is greater than 50 percent,
then the prediction is positive or correct. In the Equations (9)
and (10), true positive (TP) means the number of detections
with IoU greater than 50 percent. False positive (FP) means
the number of detections with an IoU less than or equal to
50 percent or detected more than once. False negative (FN)
means the number of objects not detected or was detected with
IoU less than or equal to 50%. Precision measures the fraction
of positive predictions that are correct by dividing the amount
of correct positives found over the total amount of detections.
Recall measures the fraction of correct positive predictions
out of all actual positive entries. Average precision (AP) is
calculated as the average of maximum precisions of all recall
values for a specific class. mAP is the average of APs from
all classes.

Precision =
TP

TP + FP
(9)
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Recall =
TP

TP + FN
(10)

In order to evaluate the classifiers, namely CNN and SVM, a
separate metric was used, as classifiers do not assign bounding
boxes to objects. The chosen metric was the F1 score, which
is the harmonic average of precision and recall [24]. The
harmonic average is defined as the number of items being
averaged divided by the reciprocal of each item.

F1 = 2 · precision · recall
precision+ recall

(11)

C. Google Cloud Implementation

In order to optimize the training time for each algorithm,
two virtual machines were created. Each machine ran on
Ubuntu 16.04 and was implemented with a Intel Haswell

quad-core central processor and two Nvidia Tesla P100
graphic processors. In order to interface with the Google
virtual machine, an SSH client was connected to the virtual
machine through Putty, a software that allows connection
with remote computers. This granted a command prompt
connection to the Ubuntu 16.04 OS and allowed software
installation. To run the machine learning networks, libraries
such as Scikit and Pytorch were installed. Keras, Anaconda,
and TensorFlow 1.8 were also downloaded as frameworks to
allow the training of the neural networks. The time spent
on training was reduced even further by installing CUDA
9.2 and CUDNN 7.1.4, both of which allow the usage of
graphic processor units through TensorFlow in the training.
However, Google Compute Engine is set to compile with an
older version of Tensorflow and CUDA. Using Bazel, the most
recent versions of Tensorflow, CUDA, and CUDNN were built
on the Ubuntu machine, increasing the processing speed by
roughly 7 to 12% [25].

D. Overall Algorithm Structure
The process of building the final detector model for use

in conjunction with the micro-UAV began by splitting up
the dataset for labeling by individual team members. After
the dataset was fully annotated and consolidated, the dataset
was divided up again, this time into training and testing data.
The five separated models were uploaded to a Google Cloud
instance for training and the training data was fed to each
of the five separate models. Evaluation metrics were assessed
for each model using the testing data. At this point the two
strongest detector models and strongest classifier were selected
for use in the ensemble method to strengthen the accuracy of
the prediction. These three models were joined together using
a custom ensemble method to create one predictor model.
Additionally, the two strongest detector models were selected
for use with a Bagging ensemble method. These two ensemble
methods were tested and compared to find the best final model
for use with the micro-UAV footage. (See Appendix A)

E. CNN Implementation
The technique of transfer learning was used to further train

the VGG16 and InceptionV3 base convolutional neural net-
works with four additional layers. VGG16 is a pre-trained deep

learning network; similarly, InceptionV3 is a convolutional
neural network that has been pre-trained on an image dataset
made publicly available by Princeton and Stanford University
called ImageNet and consists of convolution and max pooling
layers. Because they are able to extract features from images,
both are useful for image classification.

In order to fine-tune the VGG16 and InceptionV3 models,
more layers were added. The layers that were added to VGG16
are shown below.

x = Flatten()(base_model.output)
x = Dense(500, activation=’relu’,

name=’fc1’)(x)
x = Dropout(0.5)(x)
x = Dense(8, activation=’softmax’,

name=’fc2’)(x)
model = Model(inputs=base_model.input,

outputs=x)

The Flatten layer converted all of the pooled images taken
from the dataset into a continuous one-dimensional vector. The
Dense layers conduct a linear operation on the input vector that
was given. Dropout prevented overfitting the neural network
on the litter dataset through a random elimination of units
and connections between layers; it essentially regularizes the
neural network. Training both of the models revealed a better
performance for VGG16; thus, it was used as the final CNN
classifier.

F. SVM Implementation

The SVM model was mainly developed with Scikit-Learn
and Scikit-Image. The training process started with the feature
extraction from the training images. The HOG function from
Scikit-Image extracted and saved the histograms from each
image. An 8x8 cell, 1x1 block, and 12 orientation bins were
used as parameters for the feature descriptor, resulting in a
vector size of 3600 per image. These values were chosen to
maintain the useful features while also saving computation
time. After saving all the feature descriptors into separate
files, the SVC module with a linear kernel from Scikit-
Learn was used to train and save the necessary classifier.
The testing process followed a similar structure; images in
the the testing process were passed through the same feature
extraction process as the training step.

G. SSD & R-FCN Implementation

The SSD and R-FCN models were built using the Tensor-
flow Object Detection API [26]. The R-FCN was built from the
Tensorflow R-FCN Resnet-101 model and the SSD was built
using the Tensorflow SSD InceptionV2 model. Both models
were previously trained on the MSCOCO Dataset using over
220,000 annotated images. Transfer learning was used to
instantiate the new R-FCN model with some of the previously
trained layers of the Resnet-101 network and the SSD model
with previously trained layers from Googles Inception v2. In
order to use the Tensorflow Object Detection API the images
and image annotations needed to be converted from PASCAL-
VOC format to tfrecord files. A simple script was written in
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python to convert the training and testing annotations into
tfrecord files.

After preliminary testing with the models, it became clear
that some of the hyperparameters needed improvement for
both models. During training of the R-FCN model the loss
value fluctuated instead of steadily decreasing. To mitigate this
issue the learning rate of the model was decreased slowing
the learning process, but making training more gradual and
consistent. The rate of decrease of the learning rate was also
slightly increased, so that the model would learn quickly at
the beginning of the training process, but learning would slow
down as the model progressed again to make changes more
gradual. During training for the SSD model the loss value
stopped decreasing after training the model for only a little
bit. Similar changes were implemented to solve this problem
with the SSD. The learning rate was changed from 0.0004 to
0.0001 and the learning rate decay was decreased from 0.95
to 0.9. After these small adjustments the models were ready
for training on the final dataset.

H. YOLO Implementation

The YOLO neural network was mainly implemented with
DarkFlow, an open source adaptation of the Darknet library for
TensorFlow and Python [27]. Specifically, the algorithm was
generated with the architecture and weights of Tiny YOLO,
which is a more compressed version of YOLO trained with the
MSCOCO dataset. In order to modify the YOLO architecture
for the purposes of litter detection, the output layer was
changed to have 8 possible litter classifications and 65 filters.
Similar to other algorithms, the dataset of annotations was split
into a training set and a testing set. Using a built-in function,
80% of the dataset was randomly assigned to training, while
the other 20% was designated for testing.

Furthermore, the hyperparameters of YOLO were modified
to attain more accurate results and a higher mAP score.
Parameters that affect the YOLO algorithm include epochs,
batch size, stopbackward, and learning rate. These variables
greatly affect the results of the algorithm, often trading off
bias with variance. After creating the implementation of the
neural network, it was found that the network had a tendency
to poorly detect smaller objects and generally needed to have
a greater number of iterations. By changing the learning rate
and batch size hyperparameters, the YOLO was able to con-
verge to a global optimum. Through brute force, it was found
that the YOLO model works best with a learning rate of
1 ∗ 10−5 and a batch size of 16.

I. Custom Ensemble Implementation

A custom ensemble method was designed and implemented
in order to make use of both object detection and object
classification algorithms to extrapolate a more accurate pre-
diction for the bounding boxes generated by the models.
The ensemble utilized two object detection algorithms and
one object classification algorithm. The custom ensembler
begins by running the first object detection model to propose
its predictions for possible locations of litter in the image.

Fig. 8. Custom ensemble method architecture

The first object detection model acted as a region proposal
network for the later models. This means that the model
predicted the important regions in the image where objects of
interest may be located. For this role an ideal model to select
would be a quick model with high accuracy at detecting the
general region a target object presides in, without spending
too many computational resources shrinking the bounding
box down. SSD was selected as the first detector, because
it had the highest precision and accuracy score of all detector
models, meaning it was the strongest model for picking out
objects from the general image. In the next step, the custom
ensemble method runs the second object detection model on
each proposed subregion from the first model. In this way the
second detector model serves to shrink down the predictions
of the first detector model, or catch anything the first detector
may have missed within the proposed subregions. For this role
in the ensembler the ideal model would potentially sacrifice
some speed for accuracy. This reduction in speed for higher
accuracy should not cause much of an issue for the speed
of the final model, because the slower detector only has to
run on smaller segments of the image instead of the full
image. R-FCN was selected for this role because of its fairly
strong accuracy and precision relative to other models. The
last step in the custom ensemble method involves running the
classifier model on each subregion proposed by the second
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detector model within the regions proposed by the first model
to determine if the smallest predictions have merit or if the
second detector simply shrunk the prediction too small. If all
of the bounding boxes proposed by the second model match
the classes assigned by the classifier, then the predictions of
the second model are selected in place of the predictions of
the first model. Otherwise, the predictions of the first model
are accepted. In this way the various models serve to check
the predictions of the other models to produce a more accurate
ensemble (See Figure 8).

J. Bagging Ensemble Implementation

The bagging ensemble was built with the two best per-
forming detectors. Predictions from each detector were aver-
aged together to determine the final prediction. Due to the
possibility of detecting multiple objects in one image, the
ensemble method needed to determine which bounding boxes
corresponded to the same object. This step was critical to
ensure the ensemble would not ruin predictions with multiple
objects by averaging the box to a point in the image that
likely does not contain any object at all. In order to match
the boxes together, the IoU values were generated for every
combination of boxes. The bounding boxes were considered to
be correlated and were averaged together only if the IoU score
exceeded 50%. Otherwise the predictions were considered
separate entities. If a bounding box did not have any other
boxes correlated to it, the prediction would be added to the
final prediction only if the original model had an exceedingly
high confidence value [28].

K. Micro-UAV Integration

Connecting the micro-UAV to a computer in order to stream
live footage presented a unique challenge in the project. The
micro-drone came with an app by which the device could be
controlled from a smartphone; thus, it was known that the
drone had some level of a communication protocol. However,
the software for controlling the micro-UAV was not publicly
available, thus an open-source project named Hack-a-Drone
was implemented to control and receive video stream from
the drone directly to a computer [29]. The buffered image files
were piped from the project, which was written in Java, to a
separate Python script through a localhost socket in order to
make it compatible with the machine learning models which
were also written in Python. Although it sacrificed a small
amount of the speed of the real time detection since the
connection from the drone to the Python script was less direct,
this method saved time in implementation since the drone
communication protocol did not need to be programmed from
scratch. In order to minimize the delay in the video feed, a
multithreading approach was utilized to capture drone footage
in one thread while processing the footage in another. With
the real time video feed connected from the drone, the model
could finally be tested in a working demonstration.

IV. RESULTS AND ANALYSIS

A. CNN

While the CNN was able to achieve a low training loss
of 0.1598, the average F1 score of the test set showed that
the model had clearly overfitted the training dataset. Two
methods were brought in to relieve overfitting from the model:
the creation of a validation subset and the increase of the
learning rate. Hyperparameter tuning resulted in a model that
demonstrated a noticeable improvement, with an accuracy of
51.73% and an average F1 score of 0.330. The F1 scores of
0.0 regarding the cup and scrap classes may have resulted
from the fact that there was an unequal distribution of image
data. There were fewer images of cups and scraps to train on
compared to other types of litter such as bottles; thus, there
was not as much information that the models could learn from.
As a result, the model rarely classified litter as a cup or a scrap.

B. SVM

As summarized in Table II, the SVM achieved an F1 score
of 0.623. The scrap class particularly performed poorly with
a F1 score of 0. Various parameters of the feature descriptor
were modified to achieve the best score possible. Similar to
the CNN, the SVM faced setbacks due to the lack of images.
With the skewed data, the SVM faced difficulties choosing
the most optimal hyperplane. Due to the SVM dividing data
into two different groups, the SVM faced some difficulties in
classifying the images into eight different categories.

TABLE II
F1 SCORES OF CLASSIFIERS

CNN SVM
Bottle 0.681 0.647
Can 0.489 0.510

Cardboard 0.588 0.689
Container 0.442 0.419

Cup 0.000 0.889
Paper 0.000 0.746
Scrap 0.154 0.000

Wrapper 0.282 0.643
Average 0.330 0.623

C. SSD

SSD trained for longer than the other two detection algo-
rithms (R-FCN and YOLO) but it had the greatest mAP score.
The bottles, cans, containers, paper, and cardboard classes had
the greatest amount of images, so the algorithm was able to be
trained more thoroughly. The cup class had a lower accuracy
score because there was less than 100 images for cups and,
thus there was not as much data to learn from. Overall, the
SSD accurately detected objects over 50% of the time.

D. R-FCN

The R-FCN performed well with an overall mAP of 0.525.
Although it was outperformed by SSD, the difference between
the mean AP scores of the two models was only about
0.025, suggesting a similar performance level. R-FCNs highest

8



accuracy scores were seen in the paper, cardboard, and bottle
classes. This is consistent with the fact that there were a
higher number of images for those three classes compared
to others. The R-FCN did not perform as well during its first
training process. Although the mAP score of this initial model
was never assessed, the model had difficulty detecting any
litter reliably. Between training sessions, the learning rate was
decreased in order to fine-tune the model, which significantly
boosted its performance.

E. YOLO

The tiny YOLO algorithm was successfully trained on
the Google Cloud Platform with the entire dataset of 2826
images. However, tiny YOLO performed very poorly with
an overall average mAP score of 0.0825. The second YOLO
algorithm used a more robust version of YOLO that contained
more convolutional layers, allowing it to make more accurate
predictions. As a result, the average mAP score improved by
0.2605.

The YOLO model performed with an average AP score
of 0.404, which was significantly less compared to the other
two object detection algorithms. This may be attributed to the
fact that YOLO is a notably faster detection algorithm, and
therefore greatly trades off its accuracy for speed. YOLO also
had a considerable demand for data, as the neural network
performed very poorly on the wrapper, cup, and scrap classes,
all of which had roughly less than 100 images each. In
addition, due to its methodology, YOLO generally is known to
perform worse on smaller objects. This issue was undoubtedly
present in the same aforementioned classes, thus significantly
weakening YOLO’s average mAP score.

TABLE III
AP SCORES OF DETECTORS

SSD R-FCN YOLO
Bottle 0.62 0.71 0.56
Can 0.70 0.55 0.48

Cardboard 0.52 0.73 0.79
Container 0.71 0.68 0.55

Cup 0.12 0.00 0.00
Paper 0.80 0.74 0.84
Scrap 0.67 0.56 0.00

Wrapper 0.32 0.22 0.00
Average 0.56 0.53 0.40

F. Custom Ensemble Results

The custom stacking ensemble method was built success-
fully by consolidating the three best performing models and
stacking them together into one model. It was determined that
the version of the ensemble with the SSD feeding into R-
FCN feeding into the SVM had the most favorable average
mAP score of 0.521. While the algorithm performed with
a small deviation of 0.0048 from the R-FCN, it was still
outperformed by SSDs score of 0.5569. This may be because
the second level detector focused too closely on an object
causing the classifier to inaccurately recognize an object from

a very miniscule bounding box. The SVM classifier also only
had an F1 score of 0.623, which was still not robust enough to
be the final classifier on the ensemble method. Furthermore,
the Trashnet dataset contained many images of only specific
parts of litter, such as only the upper half of a water bottle.
This may have confused the model when shrinking the image,
as the second detector model often split the object into pieces
and the classifier would still detect each piece as the correct
object of interest. For these reasons, the checks and balances
system between the models in the custom ensemble method
did not improve on the sum of its parts.

G. Bagging Ensemble Results

The Bagging Ensemble method performed better than the
individual detector algorithms with an mAP score of 0.6434.
This was around 8.6% better than the best individual model,
the SSD. This ensemble method likely performed better than
the custom ensembler because through averaging the results of
the strong detectors, the ensemble method balanced inaccura-
cies in the predictions of individual models. The ensemble
method also made fewer false positive predictions. This is
because the boxes produced by each individual model needed
extremely high confidence scores to overwrite the other model
if both models did not agree. The bagging ensemble method
demonstrated the strongest results of all other ensemble meth-
ods and individual models because of the measures it took
to ensure high quality predictions. Since the bagging model
had the best performance, it was selected for processing the
real-time video from the micro-UAV.

Fig. 9. Comparison of R-FCN, SSD, Custom Ensemble, Bagging Ensemble

V. CONCLUSION

The use of robust machine learning algorithms alongside
with computer vision techniques has a great potential to affect
how the environment is monitored and maintained. It was dis-
covered that while the complex custom ensemble did not create
any noticeable improvements compared to the robust object
detection algorithms individually, the more simplistic bagging
ensemble was able to significantly improve the accuracy of the
combined strong models. When tested, the bagging ensemble
was able to perform real-time litter detection from the drones
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video stream with the highest accuracy. Clearly, the key to
improving computer vision and object detection algorithms
is to create ensembles from multiple diverse models. More
training images, especially of scrap and wrappers, could be
used to further train and enhance the models. A larger dataset
would also allow for the detection of a greater number of litter
categories, permitting the identification unique brands of litter.
Furthermore, a UAV with a higher-resolution camera and faster
video transmission speed would allow for a more accurate and
faster analysis of footage.

If research of this project is continued, the litter detection
system could be implemented into real-world applications by
deploying drones to public areas such as national parks and
highways. With the installation of a GPS, the drones could
report the precise location and type of litter to organizations to
help communities stay clean. Additionally, the drones could be
programmed with autonomous flight features to easily navigate
around and find litter without human supervision. To further
prevent littering, a mobile application using augmented reality
could be used to reward users who pick up litter, providing a
further incentive to pick up litter and clean the environment.

APPENDIX

Overall Flowchart of Final Model
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